Общее устройство телескопа Хаббл.

Астрономические приборы и оптика.

По материалам журнала "Земля и Вселенная № 1 за 1992 год, Сайт "Галактика".

Уважаемые любители астрономии! На нашем сайте вы всегда можете прочитать самые свежие новости астрономии и исследованиям космического пространства. Большинство снимков дальнего космоса в оптическом диапазоне сделано космическим телескопом имени Э.Хаббла Посетителям сайта, вероятно, будет интересно узнать, как устроен и как работает этот телескоп.

Космический телескоп имени Эдвина Хаббла. Технические характеристики космического телескопа им. Э. Хаббла Размеры 13,1 х 4,3 м Масса 11 600 кг Оптическая схема Ричи-Кретьена Виньетирование 14 % Поле зрения 18" (для научных целей), 28" (для гидирования) Угловое разрешение 0,1" на длине волны 632,8 нм Спектральный диапазон 115 нм - 1 мм Точность стабилизации 0,007" за 24 ч Расчетная орбита КА высота - 610 км, наклонение - 28,5° Планируемое время функц-вания 15 лет (с обслуживанием) Стоимость телескопа и КА 1,5 млрд. долл. (в долл. 1989 г.) Главное зеркало: Диаметр 2400 мм Радиус кривизны 11 040 мм Квадрат эксцентриситета 1,0022985 Вторичное зеркало: Диаметр 310 мм Радиус кривизны 1,358 мм Квадрат эксцентриситета 1,49686 Расстояния: Между центрами зеркал 4906,071 мм От вторичного зеркала до фокуса 6406,200 мм

Общий вид телескопа с указанием основных научных приборов.

Находящийся вне пределов земной атмосферы телескоп имеет, по меньшей мере, три преимущества перед расположенным на Земле. Первое - на качество его изображения не влияет атмосферная турбуленция. Второе - ему доступен более широкий диапазон электромагнитных волн - от ультрафиолетовых до инфракрасных. И, наконец, третье - меньшее рассеяние света за пределами атмосферы делает возможным наблюдение гораздо более слабых объектов. Для того, чтобы использовать эти преимущества, конструкторам пришлось решить непростые задачи по изготовлению оптики и созданию системы управления телескопом, которая обеспечивала бы точное наведение его на объект и крайне жесткую стабилизацию.

Диаметр главного зеркала телескопа 2,4 м. Вторичное зеркало диаметром 0,34 м в комбинации с главным составляют оптическую систему Ричи - Кретьена,вариант известной схемы Кассегрена (относительное отверстие 1:24). Расстояние между зеркалами (4,9 м) выдержано с точностью 0,0025 мм. Несущая конструкция трубы телескопа - легкая и очень жесткая эпоксидно-графитовая ферма. Телескоп спроектирован так, чтобы собирать попадающий в него свет в кружок диаметром 0,05" (I); у наземных инструментов прежде всего из-за влияния атмосферы кружок рассеяния редко бывает меньше 0,5".

Ясно, что необходимы очень большая точность наведения на объект и высокая степень стабилизации телескопа во время экспозиции, поэтому система управления телескопом, представляющая собой комбинацию гироскопов, звездных гидов и датчиков, сконструирована так, что телескоп наводится на объект с точностью не менее 0,01" и удерживает его в пределах 0,007" в течение длительного времени (вплоть до 24 часов). Аккумуляторные батареи, компьютеры, телеметрические и другие системы расположены вокруг главного зеркала в виде отдельных блоков так, чтобы в случае необходимости одетые в скафандры астронавты могли заменить их. Находясь на освещенном Солнцем участке орбиты, телескоп получает электроэнергию от двух солнечных батарей (по две панели размером 11,8 х 2,3 м). Часть ее направляется на подзарядку шести больших водородно-никелевых аккумуляторов, которые снабжают телескоп электропитанием на теневом участке витка.

НАУЧНАЯ АППАРАТУРА.

Широкоугольная и планетная камера (ШПК). Световой пучок из центра поля зрения телескопа попадает на маленькое четырехгранное зеркало пирамидальной формы с вогнутыми гранями. От него, разделившись, он отражается в четыре маленьких преобразующих кассегреновских телескопа, каждый из которых строит свою часть изображения на отдельной ПЗС-матрице размером 800Х800 элементов. Фрагменты, полученные каждой из матриц, обрабатываются компьютером и складываются в единое изображение. Камера может работать а двух режимах - "широкоугольном", при котором относительное отверстие системы составляет 1:12,9 и "планетном", 1:30. Для перехода от одного режима к другому пирамидальное зеркало поворачивается на 45° и отражение разделенного пучка происходит в направлении "квартета" других преобразующих телескопов с другими ПЗС-матрицами. В "широкоугольном" режиме окончательное изображение представляет из себя квадрат со стороной 2,6' (один элемент ПЗС-матрицы покрывает площадь 0,1' х 0,1'), а в "планетном"-поле зрения 1,1' х 1,1', размер элемента - 0,043".

Широкоугольная камера способна регистрировать широчайший диапазон длин волн-от 115 нм в ультрафиолетовой области до 1100 нм в инфракрасной. Внутри этой области, используя любой из 48 встроенных светофильтров или дифракционных решеток, можно выделять узкие диапазоны, измерять поляризацию света или использовать спектрограф с низкой дисперсией. Проницающая сила камеры - до 28'". Кроме своей основной роли широкоугольная камера может служить "искателем" для других инструментов.

Камера слабых объектов (КСО) создана Европейским космическим агентством. Она превосходит по угловому разрешению все остальные инструменты телескопа, хотя имеет очень маленькое поле зрения. Ее спектральный диапазон также более ограничен, чем у ШПК - от 115 до 650 нм. В голубой области камера способна регистрировать звезды до 30-ой звездной величины.

Камера включает две независимые схемы построения изображения, каждая из которых имеет собственную входную апертуру в фокальной плоскости телескопа. Внутренняя оптика камеры увеличивает относительное отверстие телескопа до 1:48 у одной системы и до 1:96 и 1:288 у другой. В обеих камерах используются электронные усилители изображения, в которых входящий свет усиливается в 100000 раз, прежде чем телевизионная система зафиксирует изображение. Эта комбинация настолько чувствительна, что регистрирует отдельные фотоны, попадающие в телескоп. Система с отверстием 1:48 также может использоваться в двух режимах. При прямом построении изображения она обеспечивает разрешение в 0,043" в поле 22" х 44", причем имеется возможность введения в пучок 14 фильтров и призм. Для спектральных наблюдений предусмотрены щель и дифракционная решетка.

Максимальное разрешение космического телескопа достигается в схеме с отверстием 1:96. В этом случае размер элемента разрешения составляет 0,022" в поле зрения 11" х 22". Если же увеличивать отношение до 1:288 то, например, в диапазоне коротких ультрафиолетовых волн разрешение будет 0,0072" при размерах поля 3,6" х 7,3". В схеме "1:96 - 1:288" можно использовать 44 различных фильтра, включая и поляризационные, а также различные призмы для регистрации спектров с низким разрешением.

Годдардовский спектрограф высокого разрешения (ГСВР). Под высоким разрешением здесь подразумевается спектральное разрешение, которое показывает, насколько "тонко" разлагается свет на составляющие цвета при прохождении призмы или дифракционной решетки. Например при исследовании спектрального диапазона вблизи длин волн 500 нм с помощью детекторов, разделенных половиной нм, спектральное разрешение составит 500:0,5=1000. Этот спектрограф при наблюдении в ультрафиолете позволяет достичь спектрального разрешения до 100 000 (можно наблюдать две спектральные линии, разделенные промежутком 0,002 нм).

Угловое разрешение инструмента определяется двумя апертурами. Большая из них, размером 7"', используется, в основном, в качестве искателя. Основная часть научных наблюдений проводится с помощью меньшей, 0,25-секундной апертуры, которая достаточно мала, чтобы отделить изображение исследуемой звезды от окружающих. Набор дифракционных решеток в сочетании с 512-эле-ментным телевизионным детектором типа "Диджикон" обеспечивает три величины разрешающей способности:

высокая (100000), средняя (20 000) для относительно ярких источников и низкая (2 000) - для слабых. Все они способны работать в спектральном диапазоне 105- 320 нм, но, видимо, исследования будут вестись на длине волны 115 нм. При работе с низким разрешением диапазон уменьшится до 180 нм. Подобно тому, как это делается в бытовых 35-миллиметровых фотоаппаратах, снабженных системой TTL, спектрограф сам может выбирать подходящую экспозицию при съемке.

Спектрограф слабых объектов (ССО). Как и камеры, оба спектрографа дополняют друг друга в телескопе. В отличие от годдардовского спектрографа, имеющего максимальное спектральное разрешение, ССО позволяет наблюдать в более широком спектральном диапазоне и с большей чувствительностью, хотя и с меньшим спектральным разрешением. ССО состоит также из двух раздельных каналов, каждый из которых снабжен ТВ-детектором. "Голубой" канал работает в спектральном диапазоне длин волн от 115 до 350 нм, а "красный" - от 170 до 850 нм, т.е. оба канала перекрывают весь оптический диапазон от ультрафиолетового до красного концов спектра.

Используя различные дифракционные решетки, можно вести исследования в шести участках этих диапазонов с умеренным разрешением порядка 1300. Во всех режимах можно вести и поляриметрические исследования. Свет проходит в инструмент сквозь диск со сменными апертурами. Для точечных объектов обычно используются круглые или прямоугольные апертуры длиной 1" и шириной 0,25" или 0,7" или квадратные 2" x 2". При необходимости может быть использована и большая квадратная апертура 4,3" x 4,3".

Высокоскоростной фотометр (ВСФ). Под словом "высокоскоростной" понимается способность прибора измерять быстрые изменения яркости. Он может производить до 100 тыс измерений в секунду. Для сравнения, на Земле очень трудно зафиксировать изменение яркости объекта даже за одну секунду. Выбрав какой-либо из 100 режимов, можно легко отцентрировать объект на соответствующую входную апертуру этого фотометра. Инструмент содержит пять электронных детекторов, три из которых способны зарегистрировать изменение яркости с точностью 0,1 % у звезд до 20m. В фотометре применяются 23 фильтра, в результате чего прибор работает в диапазоне 120-700 нм. Еще один детектор работает в диапазоне 200-350 нм с 27 фильтрами, а последний представляет собой фотоумножитель для наблюдений покрытий звезд в красной области спектра. Хотя у прибора есть и шести- и десятисекундные апертуры, обычно для наблюдений используются диафрагмы диаметром 0,4" или 1".

Датчики тонкого гидирования (ДТГ). Датчики могут использоваться для измерения яркости звезд и точных положений (их иногда называют шестым научным инструментом космического телескопа им. Хаббла (КТХ). Поле зрения каждого из них представляет собой 90-градусный сегмент кольца, шириной 3,8', охватывающего апертуры других инструментов. Когда два датчика "захватывают" гидирующие звезды, третий может зафиксировать яркость какой-либо третьей звезды от 4m до 17m с точностью до 1 % в спектральном диапазоне 510-690 нм, а также измерять относительное положение ее с точностью не ниже 0,003"!

ПЕРВЫЙ СВЕТ "ХАББЛА".

24 апреля 1990 г. в 8 ч 34 мин по местному времени, после двухнедельной задержки "Дискавери" с самым дорогим в истории научным прибором (создание только лишь телескопа обошлось в 1,5 млрд. долл.) устремился в небо. Обычно "Шаттлы" выводятся на орбиту высотой 220 км, но для этого полета была выбрана высота 610 км.

Это объясняется тем, что КТХ должен находиться на орбите без ее дополнительного поднятия не менее 5 лет, а верхняя граница необыкновенно "раздутой" из-за сильного солнечного максимума земной атмосферы была в то время на высоте не менее 525 км. Если бы "Дискавери" не смог выйти за ее пределы, КТХ был бы потерян до того, как НАСА смогла бы организовать спасательную экспедицию. К счастью, все обошлось благополучно и, оказавшись на высоте 614 км, экипаж облегченно вздохнул и приступил к выполнению сложной и ответственной программы.

Через 4,5 часа после начала полета астронавты подали электропитание в сеть "Хаббла" и начали проверку его аппаратуры, а 26 апреля вечером отстыковали телескоп от корабля. 27 утром была установлена связь между КТХ и спутником-ретранслятором НАСА, а в 9 ч 45 мин открылась крышка и телескоп увидел первый свет звезд.

Сopyright 2002-2023 © Сайт "Галактика"Проект "Астрономическая энциклопедия" • Идея, дизайн, хостинг, веб-мастер сайта - Кременчуцкий Александр, Москва.